Connecting the Dots: Potential of Data Integration to Identify Regulatory SNPs in Late-Onset Alzheimer's Disease GWAS Findings
نویسندگان
چکیده
Late-onset Alzheimer's disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1-6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score <3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.
منابع مشابه
The role of genetics in alzheimer’s disease
Alzheimer's disease is a progressive neurological disorder that causes the brain to shrink (atrophy) and brain cells die. Alzheimer's disease is the most common cause of dementia and causes a decrease in thinking skills and social behaviors. Alzheimer's disease is more common in people over 65 years old. The risk of developing Alzheimer's disease and other types of dementia increases with age,...
متن کاملLate-onset Alzheimer disease risk variants mark brain regulatory loci.
OBJECTIVE To investigate the top late-onset Alzheimer disease (LOAD) risk loci detected or confirmed by the International Genomics of Alzheimer's Project for association with brain gene expression levels to identify variants that influence Alzheimer disease (AD) risk through gene expression regulation. METHODS Expression levels from the cerebellum (CER) and temporal cortex (TCX) were obtained...
متن کاملGenome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease.
Only Apolipoprotein E polymorphisms have been consistently associated with the risk of late-onset Alzheimer disease (LOAD), but they represent only a minority of the underlying genetic effect. To identify additional LOAD risk loci, we performed a genome-wide association study (GWAS) on 492 LOAD cases and 498 cognitive controls using Illumina's HumanHap550 beadchip. An additional 238 cases and 2...
متن کاملAlzheimer's Disease Risk Polymorphisms Regulate Gene Expression in the ZCWPW1 and the CELF1 Loci.
Late onset Alzheimer's disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to de...
متن کاملA Knowledge-Based Weighting Framework to Boost the Power of Genome-Wide Association Studies
BACKGROUND We are moving to second-wave analysis of genome-wide association studies (GWAS), characterized by comprehensive bioinformatical and statistical evaluation of genetic associations. Existing biological knowledge is very valuable for GWAS, which may help improve their detection power particularly for disease susceptibility loci of moderate effect size. However, a challenging question is...
متن کامل